Neuromechanics of muscle synergies during cycling.
نویسندگان
چکیده
Muscle synergies have been proposed as building blocks that could simplify the construction of motor behaviors. However, the muscles within synergistic groups may have different architectures, mechanical linkages to the skeleton, and biochemical properties, and these put competing demands on the most appropriate way to activate them for different mechanical tasks. This study identifies the extent to which synergistic patterns of muscle activity vary when the mechanical demands on a limb were altered, and additionally identifies how consistent the spectral profiles of the electromyographic (EMG) intensities were across the different movement tasks. The muscle activities were measured with surface EMG across 10 muscles in the leg during cycling at a range of loads and velocities. The EMGs were quantified by their intensities in time-frequency space using wavelet analysis; the instantaneous patterns of activity identified using principal component analysis, statistically compared and further visualized using the varimax rotation. Variability (35.7%) in the patterns of activity between the muscles were correlated with the torque and velocity of the pedal crank. Anatomic groups of muscles share a common mechanical action across a joint; uncoupling between such muscles was identified in 68.8% of the varimax patterns that encompassed all 10 muscles and 20.8-29.5% of the activity patterns when the anatomic groups were analyzed separately. The EMG spectra showed greatest heterogeneity for the gastrocnemii. These results show that the activity of muscles within anatomic groups is partially uncoupled in response to altered mechanical demands on the limb.
منابع مشابه
Page 1 Neuromechanics of synergies NEUROMECHANICS OF MUSCLE SYNERGIES DURING CYCLING
Neuromechanics of synergies NEUROMECHANICS OF MUSCLE SYNERGIES DURING CYCLING James M. Wakeling and Tamara Horn School of Kinesiology, Simon Fraser University, Burnaby, BC, Canada, [email protected] Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
متن کاملShared muscle synergies in human walking and cycling.
The motor system may rely on a modular organization (muscle synergies activated in time) to execute different tasks. We investigated the common control features of walking and cycling in healthy humans from the perspective of muscle synergies. Three hypotheses were tested: 1) muscle synergies extracted from walking trials are similar to those extracted during cycling; 2) muscle synergies extrac...
متن کاملNeuromechanics of muscle synergies for posture and movement.
Recent research suggests that the nervous system controls muscles by activating flexible combinations of muscle synergies to produce a wide repertoire of movements. Muscle synergies are like building blocks, defining characteristic patterns of activation across multiple muscles that may be unique to each individual, but perform similar functions. The identification of muscle synergies has stron...
متن کاملMuscle Synergies in Cycling after Incomplete Spinal Cord Injury: Correlation with Clinical Measures of Motor Function and Spasticity
BACKGROUND After incomplete spinal cord injury (iSCI), patients suffer important sensorimotor impairments, such as abnormal locomotion patterns and spasticity. Complementary to current clinical diagnostic procedures, the analysis of muscle synergies has emerged as a promising tool to study muscle coordination, which plays a major role in the control of multi-limb functional movements. OBJECTI...
متن کاملInvestigation of Muscle Synergies Using Four Different Methods of Synergy Extraction While Running on a Treadmill in Beginner Runners
Introduction: The study of muscle synergy is a new way to evaluate the functioning of the human body's control system. Different mathematical methods are used to extract muscle synergies from electromyographic data, and this factor can cause different outputs in muscle synergies. Therefore, the aim of this study was to investigate muscle synergies using four different synergy extraction methods...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 101 2 شماره
صفحات -
تاریخ انتشار 2009